
Adaptive Anytime Motion Planning For
Robust Robot Navigation In Natural Environments

Mihail Pivtoraiko
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Email: mihail@cs.cmu.edu

Abstract— The problem of robot navigation is treated under
constraints of limited perception horizon in complex, cluttered,
natural environments. We propose a solution based on our pre-
vious work in fast constrained motion planning, where arbitrary
mobility constraints could be satisfied while the planning problem
is reduced to unconstrained heuristic search in state lattices.
By trading off optimality, we improve planner run-times and
increase robustness through achieving anytime planning quality,
such that it becomes possible to integrate the planner within
the high speed navigation framework. We show that using a
planner in navigation works well and fast enough for real vehicle
implementation, while it presents a number of important benefits
over state-of-the-art in navigation.

I. INTRODUCTION

Natural environments pose special challenges for au-
tonomous robots. Such environments are typically unstruc-
tured, sometimes quite cluttered, and unknown ahead of time.
An autonomous mobile robot traversing such environments
must be able to detect and avoid a wide variety of obstacles.
We define the basic problem of robot navigation as that
of enabling a mobile rover to traverse very long distances
autonomously and efficiently. In accomplishing this task, we
assume a robot perception system that produces accurate
results only within a limited radius in front of the vehicle.
This perception information is assumed to be updated quickly
enough such that the vehicle can stop when an obstacle is
detected in front.

Solving this problem is valuable as robust autonomy of
mobile robots results in their increased utility. The problem
of cross-country navigation is difficult for several important
reasons, in particular the lack of knowledge of the terrain,
and the desire to traverse it at as high speed as possible. The
intelligent navigation solution must be able to command high
vehicle velocity in smooth terrain, and slow down accordingly
when rough terrain is encountered. Lastly, many applications
especially benefit from the use of wheeled vehicles, and the
exploration goals must be accomplished by the navigator under
the kinematic constraints of such vehicles. We offer a solution
that effectively satisfies all these requirements.

The problem we consider has received considerable atten-
tion. Most well-known solutions include the methods of nav-
igation that are based on the evaluation of constant-curvature
arcs ([5], [10], [20] and others). These methods have been
used extensively in field work and proved to be reliable and

computationally efficient. Henceforth we refer to them as arc-
based navigators. Most of the inspiration for this work came
from field experience with these navigators, and we propose
our method as an incremental improvement over them. In
particular, we preserve a paradigm of using a global planner
to guide the vehicle in the general direction of the goal, while
a local process makes decisions for nearby motions. The key
innovation is using a full vehicle-aware motion planner instead
of the arcs and making it run fast enough such that the paths
could be replanned continuously. With this inhancement, we
propose imparting the vehicle an ability to look further ahead
and simulate motions beyond its immediate neighborhood
(although still within the perception horizon), including the
area where the vehicle already travelled. The exploration of
this greater area is accomplished via heuristic search using a
set of motion primitives, conceptually similar to the discrete
immediate motions used in arcs-based methods. This allows
the vehicle to make intelligent decisions while traversing
difficult terrain with limited perception, and the necessary
maneuvering (which may including backing up) can come out
naturally.

In the balance of the paper we explain many benefits of
such an enhancement to current navigation solutions, discuss
how modern computational hardware makes this feasible for
real-time execution, and present compelling simulation results
that demonstrate the effectiveness of our method.

II. PRIOR WORKS

This work may be viewed as a synthesis of our previous
research in motion planning, field experience and successfull
ideas of others. There is a significant heritage in outdoor
navigation for mobile robots.

In the nineties, it became possible to perform interleaved
planning and execution, and achieve higher speeds. For ex-
ample, the AVL and DEMO vehicles achieved notable results
in cross-country navigation by developing the algorithms that
continuously evaluated perception information and simplified
the planning problem to a manageable level by only making
the immediate decisions for the robot. By running this algo-
rithm in a tight loop, sufficient response time was achieved
that the vehicle could safely travel continuously at reasonable
speeds for navigation. The aforementioned arc-based naviga-
tors ([5], [10], [20], etc.) evaluate a set of predetermined arcs

against available perception information and utilized an arbiter
module to pick the best arc.

Using planning via search has been suggested as an im-
portant advantage, and [12] presented a successfull planner
that achieved efficiency by operating in a limited area in front
of the vehicle. Previously full state-space search has been
prohibitively expensive in the framework of navigation, as
suggested in [10], however thanks to the latest advances in this
technology, its applications to this problem became feasible,
as we attempt to show here. In [18] we have demonstrated
planners based on search in state lattices that are quite efficient.
Here we build on that work and present a number of significant
modifications that are necessary to obtain robustness and
performance guarantees of these planners to be used in high-
speed navigation.

In order to achieve planning robustness, which is paramount
in real-time navigation applications, we build on the body
of literature in time-critical and anytime planning. Important
inspiration for this work came from the results in [14], [15],
[21], among others. We incorporate the analysis and results in
[1] regarding sub-optimal search using overestimating heuris-
tics, while enforcing a bound on sub-optimality [15]. To our
knowledge, this is the first work, apart from others in our lab,
that achieves robust navigation at the similar or better runtime
efficiency than the state-of-the-art in navigation.

III. FAST CONSTRAINED MOTION PLANNING VIA STATE
LATTICES

In this section we offer a brief introduction to our recent
work ([18], [19]) on efficient motion planning under differ-
ential constraints. It is based on identifying a minimal set of
motion primitives and using them within simple unconstrained
search, such that the solution is an inherently feasible path. In
this discussion, we are primarily interested in wheeled vehicles
moving on rough unknown terrain. We do not constrain the
type of vehicles: an arbitrary system model formulation can
be used (including car-like and n-trailer vehicles).

A. State Lattice

Discrete representation of states is a well-established
method of reducing the computational complexity of plan-
ning at the expense of reducing completeness. However, in
motion planning, such discrete representations complicate the
satisfaction of differential constraints which reflect the limited
maneuverability of many real vehicles. We propose a mecha-
nism to achieve the computational advantages of discretization
while satisfying motion constraints.

To this end we have previously introduced a search space,
referred to as the state lattice, which is the conceptual con-
struct that is used to formulate a nonholonomic motion plan-
ning query as graph search. The state lattice is a discretized set
of all reachable configurations of the system. It is constructed
by discretizing the state space into a hyperdimensional grid
and attempting to connect the origin with every node of the
grid using a feasible path, an edge, by utilizing an inverse
trajectory generator.

1) State Discretization and Regularity: Discretization con-
verts the motion planning problem into a sequential decision
process. We adopt the typical strategy of assuming that deci-
sions are made only at discrete states. While the state vector
can certainly have arbitrary dimension, we previously have
implemented the state lattice in 4 dimensions: each lattice
node represents a 2D position, heading and curvature. In the
following sections we propose an extension of this method
that also considers translational and angular velocities as state
variables.

If the discretization exhibits any degree of regularity, then
the spatial relationships between two given states will reoccur
often due to the existence of other identically arranged pairs
of states. Such regular discretization leads to a set of motion
options which is similarly regular. Through studying the
regularity of all spatially distinct feasible motion alternatives,
we are able to remove redundancy and arrive at the minimal
representation of the overall collection of motion options.

2) Inverse Trajectory Generation: With these properties in
mind we construct the state lattice by using the inverse path
generator to find paths between any node in the grid and
the arbitrarily chosen origin. By regularity, we can copy the
resulting set of feasible paths to any node in the lattice. In the
limit, as the lattice is built by including all feasible motions
from any point, it will approach the reachability graph of the
vehicle, up to a chosen resolution. As shown in [19], the state
lattice can be considered a valid representation of the system’s
reachability graph.

There are a number of important benefits of using the
inverse trajectory generator rather than the forward one.

• Regular coverage of the discretized state space is guar-
anteed. This is not easy to achieve by discretizing the
controls and integrating model equations as done in [12],
[13]. As shown in [16], finding a discretization in controls
that results in a discretization in state space is possible,
but it is usually difficult to achieve. Conversely, by simply
using the inverse generator to create all paths of interst,
we can choose a convenient discretization that yields most
efficient planning.

• The research in efficient trajectory generation via optimal
control has received considerable attention over many
years, and currently an appreciable number of methods
are available. The generator in [8] that we evaluated
is able to compute trajectories in a few milliseconds.
Important improvements over this work, in particular to
handle rough terrain and actuator dynamics, have been
introduced in [6].

• Since we build on existing technology in trajectory gen-
eration, we note that solutions such as [6] and [8] can
generate trajectories for an arbitrary formulation of the
system model.

• A vehicle model can be easily modified without changing
the state space discretization. For example, we can add
consideration of wheel slip, delays in steering and other
actuator response only by updating the system model
considered by the trajectory generator, while the rest of

Fig. 1. Spatial equivalence classes for points and paths. All of space in a
rectangloid in C-space is placed in an equivalence class represented by the
point at the center. Similarly, all paths contained within the swath swept by
a cell following a path can be placed in an equivalence class of paths.

the solution remains the same.

B. Primitive Control Set

The state lattice introduced so far can already be used as
a search space for motion planning. However, the efficiency
of the planning could be significantly improved by avoiding
representing the entire lattice explicitly. Instead, we attempt
to obtain a finite representation of the lattice. This is identical
to capturing the local connectivity of the vehicle’s reachability
graph, i.e. the collection of paths in the near vicinity of the ve-
hicle. In [19] we introduced a principled method of capturing
this connectivity that both offers practical guarantees of best
exploration of the lattice and limits itself to considering paths
in a small local neighborhood to preserve search efficiency.
This leads us to obtain the minimal set of controls as the best
representation of all motion alternatives. Obtaining this control
set is done through addressing two dilemmas: the inifinite
paths in the generic lattice and the infinite density of them.

Since we discretize state space, it is consistent to con-
sider discretizing paths through space in a similar fashion.
We consider two paths (with identical endpoints) which are
“sufficiently” close together to be equivalent. We define a path
τ1 to be equivalent to τ2 if τ1 is contained in a certain region
Q around τ2, defined as a set of configurations within a certain
distance δe of τ1, given some metric ρ:

∀q ∈ τ1,∀q′ ∈ τ2, Q = {q′|ρ(q′, q) < δe} (1)

All paths that satisfy this criterion are considered to belong
to the same equivalence class (Fig. 1). It is important to
note that this definition of path equivalence is consistent with
applications to mobile robotics. Typically, there is a certain
error of path following for realistic vehicles. By allowing path
equivalence, and hence path discretization, we exploit this
error and obtain more efficient motion planning [18].

As for infinite extent of the paths, note that the longer
the path is, the more likely there is a concatenation of
path segments that is equivalent to the original path. An
algorithm for obtaining the control set for a lattice, known
as path decomposition, was presented in [18]. The present
discussion is general w.r.t. the methods for generation of the
motion primitives. Other ways of generating control sets are
acceptable, as long as the paths end on cell centers, such that
we can assume regularity in state space discretization.

C. Motion planning as search using control sets

Once the lattice has been created and its finite representation
has been constructed off-line, motion planning can be formu-
lated as basic search in this space. [18] showed A* applied to
this problem and quoted impressive results, where the speed
of nonholonomic planning approached, and in some cases,
exceeded, the speed of basic 2D grid planning at the same
resolution.

IV. EXTENTION OF LATTICE MOTION PLANNING FOR
NAVIGATION

The problem of navigation in unknown environments poses
a number of additional requirements. In particular, perception
is reliable only in a limited area around the vehicle. This
imposes a bound on the quality of the decisions the vehicle can
make. However, it is best to guarantee both efficient traversal
of the terrain as well as the safety of the vehicle. In this section
we discuss how the motion planner can be adapted to this
problem. In particular, we note that the cost-to-goal heuristic
estimate needs to account for the fact that the cost of traversal
to the goal is not yet known. Also, the notion of the goal must
be modified since non-holonomic planning all the way to the
goal would be inefficient, especially since this plan would need
to be modified as new perception information is acquired.

A. Considering Velocity

The optimal solution may include traversing the path at
varying velocity, and vehicle dynamics come into play. There-
fore, it is important to consider vehicle velocity during search.
We extend our planner to handle velocities by repeating the
same process for determining control sets at evenly discretized
translational and angular velocities, v and ω, respectively. This
is similar to [12], however it allows us to preserve the features
of the state lattices. Using the inverse trajectory generator
prevents paths from being dense in the workspace, and enables
them to span it more efficiently. Considering primitives at
several levels of v and ω increases the state space considerably,
but due to specially designed search heuristics, the planner still
operates very efficiently.

B. Node Cost

In order to calculate the cost of traversing lattice edges
during planning, we perform convolution of the vehicle frame
over the costmap that contains available perception informa-
tion about the terrain. The primary pusrpose of this costmap
is to indicate obstacles and other untraversable regions. Such
regions are denoted in a special manner such that the planner
will not generate paths that go through them. Besides, the
costmap contains other regions that are allowed, but may be
tougher to traverse for a variety of reasons, e.g. slopes, slippery
areas, etc. All such regions are uniformly indicated as high-
cost areas in the map and are considered uniformly by the
planner.

However, convolution is a fairly computationally expensive
procedure. To improve run-time, we exploit the technique
derived from the method introduced in [12]. Each primitive

path in the control set is associated with a list of map cells
that it covers, i.e. that correspond to the projection of the
control primitive onto the workspace. This list is pre-computed
off-line. Then, in order to estimate the cost of a particular
primitive, we simply iterate over this list and sum the sampled
cell costs starting at the vehicle’s pose in the costmap. This
process allows us to consider non-binary obstacles which is
important for achieving a tunable trade-off between traversal
time and the overall cost of traversal. Being able to satisfy
this trade-off is especially important in off-road navigation
scenarios. Moreover, the procedure of summing values over
an array of data is a very efficient operation and can be
greatly optimized: modern processors offer special instructions
to accomplish this in hardware (e.g. SIMD extensions on
Intel R© or other processors).

C. Termination Condition

Since the motion planner executes within the navigation
scenario, the actual goal of the traversal may be a long distance
away, most of which lies over unknown environment. Hence,
it is inefficient to execute the planner all the way to the
goal. Unlike [14] and [15], we execute the planner in a small
neighborhood of the robot where perception information is
reliable. Typically real sensors have a certain distance where
their readings are reliable, and this deffines a certain perception
horizon radius, Rp, around the vehicle [9]. Besides the distance
from the vehicle, the second criterion for the goal states is
alignment with the general direction to the goal, as suggested
by the D* cost. Since D* cost is typically available at all lattice
nodes near the vehicle, it can be viewed as a discrete field.
The gradient of this field indicates a general direction toward
the goal. Thus, we define a goal region to be a subset of the
state space S which includes the states whose translational
coordinates are at least a specific distance R ≤ Rp to the
robot position (using Euclidean metric) and whose heading θs

is aligned within a certain threshold ∆θ to the direction of the
gradient of D* field, θD∗ :

∀s ∈ S, G = {s|L2(s, s0) < R, |θs − θD∗ | < ∆θ} (2)

In the following sections we describe how the goal region
can be modified to support anytime plannint properties. In par-
ticular, note that there is a relationship between the magnitude
of distance threshold R and relative difficulty of planning: the
smaller this value, the fewer search iterations are required to
achieve a goal state s ∈ G.

D. Weighted Heuristic for Planning in Navigation

Similar to other work in this area, namely [14], we are using
fast 2D search as heuristic. Since in the problem of navigation
the environment is largely unknown, it is helpful to plan the
overall path backwards: from the final goal to the vehicle. In
this manner the root of the search tree can remain the same.
Moreover, as new environment information is uncovered as
the vehicle is moving, it is necessary to avoid the complete
replanning. A good 2D search algorithm that satisfies these

requirements is Field D* [3]. The weighted node costs of this
algorithm are used as heuristic values.

In the navigation problem as described, the planning prob-
lem is quite complex and the available time for planning can
be very scarse. Due to these constraints, generating optimal so-
lutions often can be impossible. In these situations, the planner
must be able to find the best solution that can be generated
within the available time. Well-known algorithms that satisfy
such requirements are known as anytime algorithms [2], [15],
[21]. The anytime planning algorithms that are based on A*
make use of the fact that in many domains inflating the A*
heurisic values often provides significal improvement in search
runtime at the cost of optimality [1], [11]. Besides, it was
shown [17] that if the consistent heuristic is used and the
heuristic values are multiplied by an inflation factor ε > 1,
the cost of the generated solution is guaranteed to be within
a factor of ε of the cost of the optimal solution. In other
words, ε serves as a bound on sub-optimality of the produced
solution. This parameter allows us to to achieve reactive real-
time execution times while ensuring a bound on the sub-
optimality of the solution.

E. Anytime Planning

For using planning within a navigation framework that is
executed on a vehicle that is moving at high speed, it is critical
to have runtime guarantees. Anytime planning therefore is
especially attractive for this application. Our formulation of
the navigation solution allows achieving anytime planning in
two ways. First, the solution lends itself well to leveraging
the standard anytime planners. Through utilizing the state
lattice, nonholonomic planning reduces to basic search in
this specialized search space and therefore is “mechanically”
identical to the grid search. It follows that anytime algorithms
such as ARA* [15] can be readily used for this application.

A second way for adopting anytime ideas and improving
robustness is via modifying the meaning of the goal by
extending the goal radius R. This extension can be viewed
as an incrementally increasing depth of search. After just one
iteration of the search, the planner will have identified a path
segment that is the bast way to go to avoid obstacles and
move in the best direction toward the goal (as indicated by
the summation of the cost of the segment and the heuristic,
here based on the D* cost). If time allows, the planner is
allowed to proceed with search to the next, greater, value of
R. Thus the search continues incrementally farther away from
the vehicle. The search will terminate when the goal region
reaches the perception horizon. In terms of A* search, this
means that when a goal state is about to be popped from the
top of the OPEN list, we simply extend the goal region and
continue the searching algorithm. In this way we reuse all the
previous computation with no additional overhead, while the
search can be interrupted and a valid path to a previous value
of R is returned and is readily available for execution on the
vehicle.

Thus, in easy environmetns the planner will be able to
progress the search up to Rp quickly. In more complex

environments, the planner will only be able to plan very near
the vehicle. The robot will still have paths to execute, but
these delays can serve as cues to the robot that environment is
complex. This will result in an intelligent behavior of slowing
down. As the vehicle slows, the planner will have more time
to find better plans (perhaps by additionally decreasing the
suboptimality bound ε for better quality solutions), such that
it can get out of tough spots with the least risk.

V. HERITAGE OF ARCS-BASED NAVIGATORS

We would like to acknowledge once again that much of
the inspiration for this work came from extensive field expe-
rience with arc-based navigators. Such algorithms have been
successfully utilized over the years. In particular, our work on
Perception for Off-road Robotics (PerceptOR) and Learning
Applied to Ground Robots (LAGR) projects (supported by
DARPA) enabled us to identify the strengths and ideas for
improvement of these algorithms. Most of these ideas have
been incorporated in this work. We hope that this work
will serve as an incremental improvement over that proven
technology.

A. The Similarities

It is important to point out that there are a number of
structural parallels between arcs-based navigation algorithms
and the motion planner introduced here. We outline most
important ones below.

• Each node expansion of the planner’s search algorithm
(e.g. A* or ARA*) is functionally equivalent to arc
generation in arc-based approaches. Note that the arcs
are typically generated by forward simulation of the
dynamic vehicle model, given current vehicle state. As
described in Section III-B the present planner makes
these primitives readily available, and some efficiency is
gained in avoiding online execution of the mathematics
for forward vehicle model simulation.

• Each evaluation of node cost during search is similar to
“tactical” trajectory evaluation during each cycle of an
arcs-based navigator. Often this step is also implemented
by convolution of vehicle frame over the cost map, as we
suggest in Section IV-B. We also point out that a typical
number of different arcs that are evaluated is over a dozen
[20], [5] which is greater than the average outdegree of
the sets of motion primitives that were shown sufficient
for capturing the variety of immediate motions of similar
vehicles through the process of control set generation in
[19]. One reason for this is that the control set primitives
are certainly not constrained to constant curvature like
the arcs are. This is a savings both in the degree of node
expansion and in the amount of convolution computation
that needs to be performed.

• Each evaluation of node heuristic during search is similar
to the “strategic” trajectory evaluation during each cycle
of arcs-based navigators. This evaluation is crucial to
guiding the vehicle in the general direction toward the
goal. For approaches that rely on D* or similar global

search methods, this amounts to reading the cost to goal
from the terminal points of each arc. In our approach we
use the same approach in assigning heuristic values to
nodes.

• The conclusion of each cycle of typical arcs-based nav-
igators is execution of an arbiter that combines both
“tactical” and “strategic” scores into a single measure
which dictates which arc is chosen for execution. There
has been a fair amount of research on best ways to
do this ([20] and others). The same basic question is
important in heuristic search, in combining the cost and
heuristic value of a node into its overall cost (e.g. f-value
in [15]). In practice, it is typical to sum these two values,
however, this framework lends itself well to implementing
more sophisticated methods for generating a node’s overal
score.

B. Utilizing Perception Information

Modern perception systems are able to provide reliable
information about the environment much farther from the
vehicle than their predecessors from the mid-nineties, when
arcs-based navigation was introduced. To stay up with this
progress, navigators have increased the number and length of
arcs, augmented them with paths of other shapes, e.g. clothoids
[10]. There have been attempts to implement search-based
selection of arcs in [12] in the limited region in front of
the vehicle. We suggest that unlimited nonholonomic planning
improves considerably on the previous attempts to explore all
perceived environment more fully. As we have described, the
unconstrained search that is the core of this planner is able to
find plans all the way to the perception horizon, and sample the
state space densely at any practical resolution. Moreover, if the
vehicle had to stop in especially complex terrain (e.g. a cul-
de-sac), the planner would naturally consider backward arcs
and generate a steering maneuver that will guide the vehicle
out of the impasse while satisfying its mobility constraints, all
in minimal time.

To illustrate this discussion, we have chosen several exam-
ples of navigation in natural terrain that are problematic for
arcs-based navigator and that suggest the improvements we
propose. Figure 2a shows a large region of obstacles collinear
with the vehicle and the goal. D* cost field is therefore
symmetric, and thus two very different D* paths appear to
have effectively the same cost. Any fluctuation of the vehicle
pose toward one or the other will cause oscillation between
D* paths and the corresponding choice of the arc. In the worst
case, the vehicle will not be able to recover and eventually will
run into the obstacle. As we will see later, the plan generated
using search will develop the true cost toward the goal that will
incorporate vehicle kinematics constraints and by its virtue of
exploring a larger area than the immediate neighborhood of
the vehicle, it will be able to avoid such oscillation by finding
absolute lowest cost given vehicle pose. Given such a plan, it
is also natural to allow the vehicle to commit to executing it
for at least the distance of reliable perception horizon – such
a commitment will also disregard D* fluctuations for a short

Fig. 2. Examples of typical challenges of arc-based navigators. White
space represents flat terrain, gray regions are high cost and purple indicates
obstacles. Figure a) represents a problem with oscillating D* path; b) shows
that an attempt to execute a 90 degree turn suggested by D* can cause
the vehicle to run into obstacles; c) illustrates how the lack of capacity to
backtrack in simulation (as in planning via search) causes the vehicle to go
over very high cost, whereas there is space to go around (if the robot state-
space search, a maneuver to explore the area before commiting to this traversal
would come out naturally).

while and thus enhance the robustness.
Another example occurs quite often in natural environments

(Figure 2b). In this scenario of a narrow hallway that leads
toward the goal. The arcs navigator will correctly lead the
vehicle along the wall in search of the passage, however when
one is discovered, it is typically much too late for the vehicle
to make the turn. Another behavior would need to get involved
to re-orient the vehicle into the passage. If, on the contrary,
we imagine using search in the space of vehicle trajectories,
then a necessary n-point maneuver to get into the hallway will
be considered automatically (no need for special behaviors).

Figure 2c illustrates a situation where there is a high-cost,
but not obstacle, area in front of the vehicle. It could, for
example, be a fallen tree: the vehicle can go over it, but it
is not easy and poses a risk of high-centering. The set of
arcs is assumed to span the length of the perception horizon.
The log is wide enough such that all arcs of the navigator go
across it, thus all arcs have high cost and the arbiter has no
chance of choosing an arc that would avoid the log. Unless
special post-processing is implemented, such a navigator will
generally enter all regions of high cost that are wider than the
span of the arcs. It will correctly indicate that the vehicle must
slow down, but nevertheless due to the “near-sightednes” of
considering motion alternatives right in front, it will attempt

to traverse such regions, which may be very costly and/or
risky. Moreover, this does not appear to be the issue of limited
perception horizon, because even if the robot had explored the
area before, it would make the same mistake twice simply due
to the nature of its navigator. In contrast, if the navigator had
the capability to simulate further and backtrack, i.e. execute a
search, then it could compare the cost of going over the high
cost versus further exploring the area.

VI. RESULTS

In this section we will focus on our current implementation
of the navigator described herein and its comparison with other
leading navigation systems. We discuss that while similar run-
times can be achieved by utilizing this motion planner as
state-of-the-art navigators, the results are superior thanks to
its quality of exploring much wider area around the vehicle,
thereby exploiting all perception information that is avaialble.
In this regard, the planner-enabled navigator outperforms its
counterparts in the most complex and cluttered natural envi-
ronments, i.e. where traversal success matters the most due to
the risk of failure.

A. Runtime and Continuous Replanning

Typical navigation algorithm that allow continuous robot
motion feature the ability to replan continuously. Arcs-based
navigators have efficient arc selection algortihms that allow
arc evaluation and arbitration to be executed continuously.
In particular, [7] quotes the ability to perform perception-
plannning cycles several times a second. In our implementation
of the motion planner described here, we have achieved
successful replanning rates of about 3 Hz, and so clearly
continuous replanning is possible. Thanks to latest advances,
nonholonomic motion planners approach the runtimes of sim-
ple predictive controllers.

We have also experimented with and obtained somewhat
more efficient tranversal results by allowing the planner to
run more slowly, but achieve lower bound on sub-optimality
ε. In this case, the planner could be allowed to run for about
a second. In order to support this longer runtime within the
navigation scenario, we have utilized the approach of [12],
where the search is started from the projected state of the
robot given its current state. Further evaluation of this mode
of operation will be the subject of the future work.

B. Simulation Results on Real Data

We have tested an implementation of the planner-enabled
navigator presented herein in simulation in a variety of
simulated and real-world environments. In easy to medium
terrain, the performance of this navigator was similar to that
of arcs-based navigators. This is likely due to a great deal
of similarity between these algorithms. However, in difficult
terrain, the planner-based navigator yielded more robust and
efficient traversals. Due to the nature of the planner used, the
traversal is not guaranteed to be optimal, but this navigator
never failed to find a path to goal when it existed, which was
a significant advantage over the tested arcs-based navigator.

Fig. 3. Simulation of implementations of an arcs-based navigator (a) and
the navigator utilizing motion planning via lattice search (b). This experiment
features real perception data collected during field tests with the LAGR robots
at JPL (courtesy of Andrew Howard).

In Figure 3 we show an example of a fairly difficult narrow
passage in an obstacle-ridden environment (obtained from real
data from field tests with the LAGR robots at JPL). Note
that the LAGR robots feature differential-drive mobility, and
so they can execute high-curvature turns and turn in place.
Both navigators experienced difficulty traversing this terrain
(middle of figures), while the planner-enabled navigator solved
this problem with only a couple of point-turns. Thanks to the
capability to perform unlimited motion planning “natively”,
the proposed navigator offers significant gains in robustness
of traversing unknown rough terrain. This advantage is crucial
for reliable autonomy and increased utility of off-road mobile
robots.

VII. CONCLUSION

We have presented a robust navigation algorithm for mobile
robots traversing unknown natural terrain. The goal of this
work was to build on previous field experience as well as the
latest in research in robot navigation and nonholonomic mo-
tion planning. Thanks to the increased computation availability
and latest advances in motion planning research it becomes
possible to perform full state-space search within the navi-
gation framework. We provide special run-time performance
and response characteristics to ensure anytime qualities of the
motion planner, such that the planning can be done under
tight timing constraints. Future work includes validation of this
technology on real vehicles and further improving planning
efficiency to increase replan frequency.

REFERENCES

[1] Chakrabarti, P., Ghosh, S. and DeSarkar, S. Admissibility of AO* when
heuristics overestimate. Artificial Intelligence, 34:97-113, 1988.

[2] Dean, T. and Boddy, M. An analysis of time-dependent planning. In
Proceedings of the National Conference on Artificial Intelligence (AAAI),
1998.

[3] Ferguson, D., Stentz, A. Field D*: an interpolation-based path planner
and replanner. In Proceedings of the International Symposium on Robotics
Research (ISRR), October, 2005.

[4] Frazzoli, E., Dahleh, M.A. and Feron, E. Real-time motion planning
for agile autonomous vehicles. In Proceedings of the American Control
Conference, 2001.

[5] Goldberg, S., Maimone, M. and Matthies, L. Stereo vision and rover
navigation software for planetary exploration. In Proceedings of the IEEE
Aerospace Conference, vol. 5, 2002.

[6] Howard, T. and Kelly, A. Trajectory generation on rough terrain consid-
ering actuator dynamics. In Proceedings of the International Conference
on Field and Service Robotics, August, 2005.

[7] Kelly, A., Amidi, O., Happold, M., Herman, H., Pilarski, T., Rander, P.,
Stentz, A., Vallidis, N., Warner, R. Toward reliable off-road autonomous
vehicles operating in challenging environments. In Proceedings of the
International Symposium on Experimental Robotics, 2004.

[8] Kelly, A. and Nagy, B. Reactive nonholonomic trajectory generation via
parametric optimal control. International Journal of Robotics Research,
22:583-601, 2003.

[9] Kelly, A. and Stentz, A. Rough terrain autonomous mobility - part 1:
a theoretical analysis of requirements. Autonomous Robots, 5:129-161,
1998.

[10] Kelly, A. and Stentz, A. Rough terrain autonomous mobility - part 2:
an active vision, predictive control approach. Autonomous Robots, 5:163-
198, 1998.

[11] Korf, R. Linear-space best-first search. Artificial Intelligence, 62:41-78,
1993.

[12] Lacaze, A., Moscovitz, Y., DeClaris, N. and Murphy, K. Path planning
for autonomous vehicles driving over rough terrain. In the Proceedings
of the IEEE ISIC/CIRA/ISAS Joint Conference, September, 1998.

[13] Latombe, J.-C. Robot motion planning. Kluwer, Boston, 1991.
[14] Likhachev, M., Ferguson, D., Gordon, G., Stentz, A. and Thrun, S.

Anytime Dynamic A*: an anytime replanning algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), June, 2005.

[15] Likhachev, M., Gordon, G. and Thrun, S. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems, MIT Press, 2003.

[16] Pancanti, S., Pallottino, L., Salvadorini, D. and Bicchi, A. Motion
planning through symbols and lattices. In Proceedings of the International
Conference on Robotics and Automation, 2004.

[17] Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[18] Pivtoraiko, M. and Kelly, A. Constrained motion planning in discrete
state spaces. In Proceedings of the International Conference on Field
and Service Robotics, August, 2005.

[19] Pivtoraiko, M. and Kelly, A. Generating near-minimal spanning control
sets for contstrained motion planning in discrete state spaces. In Proceed-
ings of the International Conference on Intelligent Robots and Systems,
August, 2005.

[20] Simmons, R., Henriksen, L., Chrisman, L. and Whelan, G. Obstacle
avoidance and safeguarding for a lunar rover. In AIAA Forum on Advanced
Developments in Space Robotics, Madison, WI, August 1996.

[21] Zilberstein, S. and Russell, S. Approximate reasoning using anytime al-
gorithms. In Imprecise and Approximate Computation. Kluwer Academic
Publishers, 1995.

