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Summary. We propose a principled method to create a search space for constrained
motion planning, which efficiently encodes only feasible motion plans. The space of
possible paths is encoded implicitly in the connections between states, but only fea-
sible and only local connections are allowed. Furthermore, we propose a systematic
method to generate a near-minimal set of spatially distinct motion alternatives. This
set of motion primitives preserves the connectivity of the representation while elim-
inating redundancy — leading to a very efficient structure for motion planning at the
chosen resolution.
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1 Introduction

Discrete representation of states is a well-established method of reducing the
computational complexity of planning at the expense of reducing complete-
ness. However, in motion planning, such discrete representations complicate
the satisfaction of differential constraints which reflect the limited maneuver-
ability of many real vehicles. We propose a mechanism to achieve the compu-
tational advantages of discretization while satisfying motion constraints.

To this end we introduce a search space, referred to as the state lattice,
which is the conceptual construct that is used to formulate a nonholonomic
motion planning query as graph search. The state lattice is a discretized set
of all reachable configurations of the system. It is constructed by discretizing
the C-space into a hyperdimensional grid and attempting to connect the origin
with every node of the grid using a feasible path, an edge, using an inverse
trajectory generator. The lattice in general is also assumed to contain all
feasible paths, up to a given resolution, which implies that if it is possible for
a vehicle to travel from one node to another node, then the lattice contains a
sequence of paths to perform this maneuver. Hence, it is possible to conclude
that this formulation allows resolution complete planning queries.
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Like a grid, the state lattice converts the problem of planning in a con-
tinuous function space into one of generating a sequence of decisions chosen
from distinct alternatives. Unlike a grid, the state lattice is carefully con-
structed such that each connection represents a feasible path. A connectivity
scheme that intrinsically represents mobility constraints leads to superior mo-
tion planning results because no time is wasted either generating, evaluating,
or fixing infeasible plans.

To achieve this scheme we attempt to capture local connectivity of the
state lattice, within a limited neighborhood of any node. We discuss design-
ing a small control set, a minimal set of primitive paths that, when concate-
nated, can re-generate any other path in the lattice. We further show that
this formulation lends itself directly to building an efficient search algorithm.

2 Prior Work

The utility of the lattice is hinged on the assumption that it is possible to
determine a feasible path between any two configurations in a C-space without
obstacles. While this is itself a very difficult problem, it has been the objective
of much research in the past century. Frazzoli et al. in [3] suggest that there
are many cases where efficient, obstacle-free paths may be computed either
analytically or numerically by solving an appropriate optimal control problem.
A fast nonholonomic trajectory generator was described in [10]. It generates
polynomial spiral trajectories, such that a path is specified by a continuous
control function: curvature as a function of path length.

It was shown in [6] that through careful discretization in control space it
is possible to force the resulting reachability graph of a large class of non-
holonomic systems to be a lattice. However, this is usually difficult to achieve,
and under most quantizations the vertices of the reachability graph are un-
fortunately dense in the reachable set. By using an inverse path generator,
we can choose a convenient discretization in control and state space, one that
makes the search more efficient. This also allows us to use continuous control
functions that are natural for real systems.

The importance and difficulty of enforcing differential constraints also has
a long history [1], [9], [5]. A recent trend appears to favor more deterministic
variants of the PRM [11]. In [2], Quasi-PRM and Lattice Roadmap (LRM)
are introduced by using low-discrepancy Halton/Hammersley sequences and a
regular lattice, respectively, for sampling. LRM appeared especially attractive
due to its properties of optimal dispersion and near-optimal discrepancy.

Also, a “Lazy” variant of these methods was discussed that avoided col-
lision checking during the roadmap construction phase. In this manner the
same roadmap could be used in a variety of settings, at the cost of performing
collision checking during the search. An even “lazier” version is suggested, in
which “the initial graph is not even explicitly represented” [2]. In this regard,
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our approach of using an implicit lattice and searching it by means of a pre-
computed control set that only captures local connectivity is very similar to
the Lazy LRM. Our contribution is in exploring the conjecture made in that
work and successfully applying it to nonholonomic motion planning.

Initial concepts of this work were explored in a successful field implementa-
tion of a nonholonomic motion planner built using the state lattice of limited
size represented explicitly [4].

3 State Lattice

In this section we describe the state lattice as a generalization of a grid and
present it as a search space for efficient constrained motion planning as heuris-
tic search.

3.1 Inverse Path Generation

Among several approaches discussed in Section 1.1 that allow finding a se-
quence of controls from a given initial configuration to a final configuration,
we evaluated the one described in [10]. This approach allows fast generation
of nonholonomic trajectories. The assumed form of the solution path is a
curvature polynomial of arbitrary order. The method was shown to provide
good results and in principle allows optimization w.r.t. various criteria, e.g.
least curvature variation. The continuous specification of paths was conve-
nient to manipulate and execute in vehicle controllers. The method executes
practically in real-time: a query is computed in about 1 millisecond.

3.2 Constructing the State Lattice

Discretization is central to defining the state lattice as a generalization of a
grid. Discretization converts the motion planning problem into a sequential
decision process. We adopt the typical strategy of assuming that decisions
are made only at discrete states. The states are the nodes in the lattice and
the motions that connect the states are the edges. While the state vector can
certainly have arbitrary dimension, for this paper we have implemented the
state lattice in 4 dimensions. Each node of the lattice therefore represents a
4-dimensional posture that includes 2D position, heading and curvature.

If the discretization exhibits any degree of regularity, then the spatial
relationships between two given states will reoccur often due to the existence
of other identically arranged pairs of states. A discretization exhibiting some
degree of regularity leads to a set of motion options which is similarly regular.

For the balance of the paper, we adopt the assumption that the state
space discretization is regular in at least the translational coordinates (z,y).
Specifically, if the path between two postures:
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Fig. 1. Constructing the lattice for the Reeds-Shepp Car. In a) we define a discretiza-
tion in C-space (an (x,y) grid is chosen here, arrows indicate allowed headings), an
origin is chosen; b) for 8 neighbor nodes around the origin, feasible paths are found;
c) same query is extended outward to 24 neighbors, only a few direct paths shown;
d) complete lattice.

(i, Y3, 05, ki) = (25,958,058, k5]
is feasible, then so is the path
[ + 1A,y + 1Ay, 0;, ki) — [xp + 1Ay yp +ndp, 0y, k]

for any integer n and (z, y)-discretization step size 4A;. While the starting and
ending states for two such motions are distinct, the motion itself (perhaps
encoded as a steering function) is not.

With these properties in mind we construct the state lattice by using the
inverse path generator to find paths between any node in the grid and the
arbitrarily chosen origin. Fig. 1 illustrates lattice construction for the Reeds-
Shepp car. By regularity, we can copy the resulting set of feasible paths to any
node in the lattice. In the limit, as the lattice is built by including all feasible
motions from any point, it will approach the reachability graph of the vehicle,
up to a chosen resolution. Without loss of generality, we henceforth consider
the state lattice to be a valid representation of the system’s reachability graph.

Since we discretize state space, it is consistent to consider discretizing
paths through space in a similar fashion. We consider two paths (with identical
endpoints) which are “sufficiently” close together to be equivalent. We define
a path 7, to be equivalent to 75 if 7y is contained in a certain region @ around
Ty, defined as a set of configurations within a certain distance d. of 71, given
some metric p:
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Fig. 2. Path Equivalence. A variety of paths between two configurations (thin
black lines) that are contained in the boundary (grey region) are considered to be
equivalent and represented by a canonical path (thick gray line).

Vg e m,Yq € 12,Q ={d'|p(d',q) < 0} (1)

All paths that satisfy this criterion are considered to belong to the same
equivalence class (Fig. 2). It is important to note that this definition of path
equivalence is consistent with applications to mobile robotics. Typically, there
is a certain error of path following for realistic vehicles. By exploiting this
error, motion planning can be made more efficient, as presented below.

4 Control Set

Here we present a principled method of choosing the neighborhood of the
lattice that both offers practical guarantees of best exploration of the lattice
and keeps the neighborhood size small to preserve search efficiency. We strive
to obtain the minimal set of controls as motion alternatives that captures
local connectivity of the lattice.

4.1 Path Decomposition

With the insights obtained in Section 2.2, we again look at the lattice as a
concept derived from a grid. The regularity property of the grid implies that
it is possible to isolate a certain representative set of connections which is
repeated everywhere in the grid. As is illustrated in Fig. 3a, for the case of
a 4-connected rectangular grid, it is easy to identify the minimal set of con-
nections. The grey lines in this figure represent all possible paths in the grid.
Four thick black paths in the center constitute the minimal set of paths. Any
path through this grid can be decomposed into a sequence of “primitives”,
paths in the minimal set. If we cast the grid in the context of motion plan-
ning, we understand that this minimal set enables us to generate arbitrarily
long motion plans in the infinite grid. This concept has been used in motion
planning for some time [1].

In a similar fashion, if we could identify such a control set for a lattice,
we could use it to address the computational issues mentioned above and
essentially create a finite representation of the lattice.

By invoking the notion of path equivalence class and some 6. > 0, we can
substitute a path with two other paths such that their concatenation generates
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a motion that belongs to the same equivalence class as the original path. We
define path decomposition as the problem of finding two such constituents of
a path (Fig. 3b).

By definition of path decomposition, the two constituent paths must meet
at a lattice node. Intuitively, the longer a path is, the more lattice nodes it
comes “close” to, hence the easier it is to find a decomposition because there
are more “opportunities” to do so. Through a simulation study we concluded
that it is possible for realistic vehicle parameters (Kmq, and d.) to decompose
the entire assumed infinity of motions in the state lattice, of arbitrary length,
in this manner. We considered over 2000 different (relatively long) paths in
the lattice and showed that all of them could be decomposed into at least
two (usually more) smaller paths. Thus, the control set allows us to eliminate
redundancies of the lattice both in terms of the variety of paths between nodes
(through the notion of path equivalence), and in terms of generally unlimited
path length (path decomposition).

4.2 Generating the Control Set

Given a method to generate the set of distinct feasible paths to a single state,
the control set can be generated by a process of structured elimination. First,
paths to all states one unit from the origin are generated, then, paths to all
states two units from the origin, etc. When a path is considered, it is tested
for passing sufficiently close to an intermediate state, and if so, it is removed
from the control set because it can be decomposed into the path to this state
from the origin and the path from this state to the end-point. Since we are
moving radially outward, any path that can be decomposed may be removed
from the control set because its “ingredients” have already been considered.

a) b) c)
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Fig. 3. a) Isolating a minimal set of paths in a 4-connected grid. b) An illustration
of path decomposition. Blue diamonds are lattice nodes; the black curve on the left
is some arbitrary path (that starts and ends on nodes). On the right, we show that
it can be decomposed into two (grey) smaller paths that meet at another node.
c¢) Special heading discretization that allows considering straight lines as much as
possible. Black arrows show 8 equal heading intervals, grey arrows represent finer,
non-uniform discretization: 8 additional intervals chosen such that the grey arrows
end on nodes as well.
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Each of them is either in the control set already or does not need to be because
it itself is decomposable.

This process terminates at the certain radial distance from the origin when
all paths at that distance can be decomposed. Through simulation studies
similar to the one mentioned in Section 3.1 we verified that this termination
condition is a good heuristic for obtaining a control set that spans the entire
state lattice.

Although a uniform discretization of heading is an option, we found it
useful to discretize heading in the non-uniform manner. The motivation for
this is to enable the planner to produce straight-line paths as much as possible.
For example, if the goal is a node that is to the left two nodes and up one node
from the origin, then a vehicle can get there in a straight line if its heading
is arctan(1/2) = 26.6°. Therefore, we define 8 equal heading intervals of 45°,
and also 8 non-uniform intervals chosen such that there can be straight paths
from the origin to all nodes within the radius of two nodes around the origin.
Certainly, increasing this radius would result in finer heading resolution and
increase consideration of straight paths, however experimentally we concluded
that the added computational cost exceeds the gain of the radii greater than
two. Fig. 3c shows our heading discretization: black lines indicate the uniform
part, and grey lines show the non-uniform part.

Motion alternatives were expressed as polynomial steering (curvature)
functions of cubic order:

Fig. 4. An Example Control Set. Only three sets of paths with initial heading of
0, 26.6 and 45° are specified; all others are obtained by reflection around x- and
y-axes, and the two diagonals.
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k(s) = a+ bs + cs* +ds®

Such functions possess exactly the 5 degrees of freedom required to join any
two poses with arbitrary initial and terminal curvatures [10]. An example
control set that results is depicted in Fig. 4. Note that the shortest paths (e.g.
straight up of length 1) are present in the control set, but not immediately
visible.

5 Motion Planning Using Control Sets

The state lattice now possesses the properties necessary to express nonholo-
nomic motion planning as graph search. A cost-map can be overlaid on the
lattice to represent obstacles or other criteria with respect to which we want
to find an optimum obstacle-free motion plan (energy, slope hazard, etc.). We
also assume a path sampling procedure that returns the cost of traversal of
a path given the cost of cells spanned by the path. The control set can be
viewed as the neighborhood that is expanded when a particular lattice node
is considered. Its minimality property that we were seeking is important to
making the search in the lattice efficient. We should note that by virtue of
containing all feasible motions, the lattice is a cyclic graph. Any standard
systematic heuristic graph search algorithm can be applied. In this manner
the state lattice can be considered a roadmap, in which the cost of traversal
is considered during the search.

5.1 Estimating the Search Heuristic

A key component of heuristic search (e.g. A* implemented for this paper) is
calculating the heuristic, an estimate of the cost to travel from any node in
the lattice to the goal. We begin with the discussion of the issues involved in
estimating the heuristic for nonholonomic vehicles and arrive at a heuristic
estimation scheme, based on pre-computing a look-up table, that produces
very accurate estimates, thereby improving search efficiency considerably.

The heuristic must not be an over-estimate of the true cost in order for it
to be admissible (i.e. in order to guarantee that the search algorithm will find
the optimal path). Ideally, we would like it to be exactly equal to true cost,
such that the search can be correctly guided toward the goal. Typically, it is
impossible to use standard distance metrics, e.g. Euclidean, to estimate the
nonholonomic heuristic because depending on change in heading from start
to goal and on direction to goal, the vehicle may have to execute an n-point
maneuver. Consider re-orienting a car 180°: translation can be negligible in
Euclidean sense, but the overall length of the maneuver is significant. Using
Euclidean distance for such local plans would result in a gross under-estimate
of the cost, such that the behavior of A* would approach that of breadth-first
search, with an accompanying performance decrease.
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It is important to observe that these issues are primarily relevant for local
planning. When the distance to goal is much larger than the minimum turn-
ing radius of the vehicle, the under-estimation error percentage of Euclidean
distance will become small, thus making this metric a viable heuristic option.
We this in mind, we propose a hybrid approach to calculating the heuristic: in
the close vicinity of the robot, a local estimation procedure that considers the
vehicle’s kinematic model is used, whereas in the far range Euclidean distance
is sufficiently accurate. Based on experimental studies, we found that a good
threshold for switching between local and global heuristics is 10 minimum
turning radii.

As we mentioned, it is crucial for the heuristic to be as accurate as possible
for high efficiency. However, there is no known closed-form solution for calcu-
lating the local heuristic, and obtaining an accurate estimate requires solving
the original planning problem. Thus, we defined an off-line pre-processing step
to create the heuristic look-up table (LUT). The table is simply a compilation
of the costs to travel from the origin to all lattice nodes in its local neighbor-
hood. These costs are determined by running the planner for each possible
path endpoints using simply Euclidean distance as heuristic, which is guaran-
teed to be an under-estimate. LUT generation could be a lengthy process, but
it is performed off-line, and the agenda for future work includes developing
advanced function approximators to eliminate this pre-processing. The exact
values for the path costs provided by the LUT result in the dramatic speed-up
of the planner as described in the next section.

5.2 Path Planner Results

In order to quantify the performance of the present path planner, we under-
took a simulation study that included performing a statistically significant
number of planning experiments, where initial and final path configurations
were chosen at random. It was confirmed that the planner built using the
control set generated in Section 4.2 for the robots in [4] is very efficient: it
performs as efficiently as basic grid search. In fact, for over 90% of path plan-
ning queries, our method performs even faster than grid search. The significant
result here is that this method generates optimal nonholonomic paths with
no post-processing, yet can perform better than the classical grid search, the
archetype of efficiency in path planning. We believe that the reason for this
significant speed-up is twofold. The primitive paths can span multiple grid
cells, such that by choosing a primitive, the planner may “jump” ahead, while
grid search still considers one cell after another. Besides, the accurate heuristic
as provided by the LUT was shown to reduce the number of required search
iterations considerably.

In Figure 5 we present the timing results of our planner by considering the
toughest local planning scenarios: the final state (goal) is close to the initial
state and exhibits significant change in heading and direction to goal. The fig-
ure shows the results of over 1000 timing experiments for both nonholonomic
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Fig. 5. Run-time results of our nonholonomic (N.H.) path planner (red datapoints)
in comparison with basic grid search (blue datapoints). Vertical axis is the time
of plan generation, and horizontal axis is the length of the nonholonomic paths.
a) Runtimes for both nonholonomic and grid search on semi-log scale. b) Average
runtimes superimposed on the same plot on linear scale.

path planner and grid search. For each experiment, a goal )y was chosen ran-
domly such that the Euclidean distance between initial state and goal was the
same. In this manner, the grid search had roughly the same amount of work
to do, whereas nonholonomic path planner’s job could vary significantly de-
pending on changes in orientation between initial and final states. The length
of the resulting nonholonomic plan is roughly indicative of that complexity,
and so the horizontal axis (in units of cell size) is intended to capture increas-
ing nonholonomic planning complexity. Figure 5a shows the runtime versus
nonholonomic path length (i.e. “complexity”) per planning query, plotted on
the semi-log scale. Nonholonomic planner runtimes are denoted with circles,
and the grid search runtimes — with stars. Even though the plot looks rather
busy, the clustering of circles below the stars is clearly visible, indicating that
on average nonholonomic planner ran faster in the same experiment (i.e. a
choice of path endpoints). This trend is easier to see in Figure 5, where we
superimposed the mean of runtime for both planners. The two solid lines (red
for nonholonomic, and blue for grid search) clearly show that nonholonomic
planner on average takes less time. The balance tilts in favor of grid search
only at the right-most end of the horizontal axis, i.e. for highest planning
complexity. Thus, our path planner is clearly very efficient and can compute
most planning queries in less than 100ms, which deems it useful for real-time
applications.

6 Applications

We discuss several important mobile robotics applications that could greatly
benefit from the constrained motion planning approach presented herein. The
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constrained motion planner presented here was successfully implemented on
the DARPA PerceptOR program [4]. This planner guided a car-like all-terrain
vehicle in its exploration of natural, often cluttered, environments. The pro-
posed planner exhibited great performance as a special behavior that was
invoked to guide the vehicle out of natural cul-de-sacs. Fig. 6b depicts an ex-
ample motion plan that was generated by the vehicle on-line. The grayscale
portion in the figure represents the cost-map, pink indicates obstacles, and
orange is the area of unknown cost. Yellow line represents the generated
plan. With this technology, the PerceptOR vehicles exhibited kilometers of
autonomous traverse in very difficult natural terrain (Fig. 6a).

Fig. 6. Example applications: a) Robot navigation in natural cluttered environments
(DARPA PerceptOR). b) A nonholonomic path computed in a natural cul-de-sac.
c) Planetary rover instrument placement problem. The rover must approach five
science objects at specified heading in cluttered environment on the slope of a crater.

Another important application for which the presented motion planner
is suited especially well is rover navigation for space exploration. The rover
instrument placement task is known to be a difficult problem both from the
standpoint of motion planning and execution (see Figure 6c¢). The signifi-
cant communication time lag is an important consideration prompting quick
progress in rover autonomy. Very rough terrain and considerable wheel slip on
loose terrain require an approach that can consider the model of rover motion
as accurately as possible, as well as take into account the peculiarities of the
terrain as it is being discovered.

Our method of motion planning is well suited for this application because it
addresses all of the above issues. The inverse trajectory generator used in this
approach [10] can use any kinematic rover model whatsoever, and therefore
any generated path is inherently executable by the rover under consideration.
The flexibility of using any cost-map, overlaid over the state lattice (implicitly
represented through using control sets), enables this planner to consider an
arbitrary definition of obstacles in terms of the map cost: both binary (e.g.
rocks) and variable (e.g. slopes as high-cost, yet traversable). Moreover, dy-
namics analysis can be made to “label” regions of steep slopes or very loose
terrain as untraversable.

An added benefit to specifying paths as continuous curvature functions is
the possibility to define velocity planning quite easily. By defining a maxi-
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mum desirable angular velocity of a vehicle, it is straight-forward to compute
the maximum translational velocity as a function of path curvature. In this
fashion, our path planner can become a trajectory planner with this simple
velocity planning post-processing step.

7 Conclusions and Future Work

This work has proposed a generative formalism for the construction of dis-
crete control sets for constrained motion planning. The inherent encoding
of constraints in the resulting representation re-renders the problem of mo-
tion planning in terms of unconstrained heuristic search. The encoding of
constraints is an offline process that does not affect the efficiency of on-line
motion planning.

Ongoing work includes designing a motion planner based on dynamic
heuristic search which would allow it to consider arbitrary moving obsta-
cles, the extension of trajectory generation to rough terrain, and hierarchical
approaches which scale the results to be applicable to kilometers of traverse.
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