Kinodynamic Motion Planning with State Lattice Motion Primitives
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Abstract— This paper presents a type of motion primitives
that can be used for building efficient kinodynamic motion plan-
ners. The primitives are pre-computed to meet two objectives: to
capture the mobility constraints of the robot as well as possible
and to establish a state sampling policy that is conducive to
efficient search. The first objective allows encoding mobility
constraints into primitives, thereby enabling fast unconstrained
search to produce feasible solutions. The second objective
enables high quality (lattice) sampling of state space, further
speeding up exploration during search. We further discuss
several novel results enabled by using such motion primitives for
kinodynamic planning, including incremental search, efficient
bi-directional search and incremental sampling.

I. INTRODUCTION

There has been significant interest recently in developing
motion primitives, specially designed controls that facilitate
motion planning, particularly under kinematics and dynamics
constraints on robot motion. The controls are developed dur-
ing construction of the planner (pre-computed) and represent
feasible motions, i.e. those that satisfy the constraints of the
system. Motion planners can utilize these primitives to enact
efficient search in state space by ignoring system constraints,
instead focusing on the environment and other constraints —
thereby improving efficiency of the planning. The role of
primitives in planning and the importance of their quality
have been motivated both in deterministic [8], [4], [24] and
randomized [7] planning domains. Their importance was also
noted in the related area of reactive obstacle avoidance in the
context of mobile robot navigation [2], [9], [19]. A number
of popular approaches to kinematic and kinodynamic plan-
ning can readily incorporate primitives in their design. The
requisit local planner in [12], [14], [22] can be implemented
as a process that chooses an appropriate element from a set of
primitives [7]. In deterministic approaches [1], [3], [8], [5],
[13], [24], the vertex expansion (set of edges emanating from
a vertex) can be a pre-determined set of primitives based on
the state value that the vertex represents.

Motion primitives have been designed in the past through
sampling control space in such a way as to result in good
sampling in state space in terms of discrepancy, dispersion
or path diversity [2], [8], [4], [9], [19], [27]. We refer to
this line of work as control-sampling primitives. In general,
designing such primitives is difficult due to the complexity
of the relationship between the robot’s control and state
spaces under kinematics and dynamics constraints. Motivated
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by this, we propose state lattice primitives, designed via a
reverse process. First, we establish an attractive sampling rule
in state space, perhaps one that is convenient and efficient
for the planning problem (e.g. commensurate with the robot’s
world model, such as an occupancy grid). Then, we compute
the controls that steer the system between these samples
using a boundary value problem (BVP) solver. The approach
can be viewed as a way of extending the Lazy LRM [21]
to handle kinematics and dynamics constraints by leveraging
the related research in BVP. Such solvers are available for a
variety of systems, such as car-like [30], chained form [26],
[27], as well as in rough terrain [11] and dynamics [17], [33]
settings. A simple example of a set of car-like primitives in
a three-dimensional (2D position and heading) state space
is shown in Figure 1. A functional planner would require
such a set for each of the 8 discrete values of heading, the
multiples of /4.

The benefits of this type of primitives are four-fold. First,
by providing the freedom to choose an arbitrary sampling
of state space for primitive endpoints, quality state sampling
policies (low discrepancy and dispersion) may be utilized,
leading to efficient exploration of state space during search.
As Figure 1 illustrates, the resulting primitives may feature
good path diversity as well. Second, under certain assump-
tions, such as flat and uniform terrain for the example above,
this freedom allows designing primitives to be position-
invariant. Experience with fielded applications demonstrated
that position-invariance assumptions are often satisfied in
practice, as long as a trajectory following controller absorbs
external perturbations [29]; if necessary, trajectory post-
processing may also be performed [20]. Once computed,
position-invariant primitives can be utilized anywhere in
search space, thereby moving integration of the controls
to planner design phase. This is more efficient than affine
invariance [8], since primitive transformation during search is
limited to translation. Third, special reachability tree pruning
rules can be easily designed. In contrast to control-sampling

Fig. 1. The state lattice motion primitives are regularly arranged in state
space. To design them, a convenient state sampling rule is chosen (e.g. a
low discrepancy lattice), then a BVP solver is used to connect the samples
via feasible motions.



primitives, where primitive endpoints are dense in state |l. MOTION PLANNING WITH LATTICE PRIMITIVES

space, state lattice ones yield a structure, where all paths)y this section, we discuss the specics of applying the
leading to a region in state space also lead to & unidu@ate lattice primitives in planning using two prominent
state value, as illustrated in Figure 2. This structure can R§ssses of search algorithms: deterministic (e.g. A*, D* [16]
exploited to attain unprecedented search ef ciency in the aregq their variants) and randomized (e.g. PRM [14], EST
of kinodynamic planning, including incremental search (@12) RRT [22] and their variants). The planning problem
potential to speed up planning by orders of magnitude) [16js specj ed with a seven-tupléX; Xsree; Xinit; Xgoal; Us f;C).
incremental sampling [21] and bi-directional search [18]1he ropotstate spaceX R", is ann-dimensional compact
Finally, the freedom in state sampling may allow tting the yifferentiable manifold, equipped with a metric Xfree X
search space to the known structure of the environment. ThiSthe set of states that satisfy global constraints (e.g. control
strength of the approach was utilized recently to t searclyoynds, obstacle avoidance, etc.). The boundary conditions
spaces to such settings as parking lots [24], roads [32], MiNgS the planning problem argni 2 Xfree and Xgoal 2 Xfree-

[5] and indoor environments [31]. The set of robot controld) contains the inputs that the
One drawback that may be experienced with the proposegstem accepts. The functidris the system model (equation
primitives is the potentially signi cant computation that mayof motion) and encodes kinematics and dynamics constraints:

be required to design this type of primitives (perhaps running= f(x;u), wherex2 X;u2 U. The functionc:U X! R

the BVP solver repeatedly). However, this computation igpecij es the cost of executing a contral2 U in X. The
off-line and does not affect the runtime of the plannerso|uti0n to the p|anning pr0b|em isacont[@h [to,tf]l U,

As another potential dif culty in certain applications, thewheret, is the starting time andy is the nal time, such
constraint that the motions are arranged in a particulgpat c(us; Xinit) is minimized. The corresponding pafh :
manner may conict with other relevant objectives. FOrt:t:]!  Xiree (Obtained by integrating (Xinit; Us)) Satis es
example, minimizing the length of primitives may be helpfulps(to) = Xinit and ps(tf) = Xgoal-

for planning amidst dense obstacles, since shorter motionsrinding the exact solution involves optimization over the
are less likely to be obstructed [4], [23]. Meeting such an olxontinuum of X and U, a dif cult problem because of
jective may be more challenging if a constraint on endpoifipstacles and local optima . Instead, it is common to
arrangements is placed. Finally, even though the motioRsstablish pruning rules that reduce the system's reachability
computed using lattice primitives are feasible and may big X andU to discretized representations, often structured as
executed by the systemerbatim most physical systems graphs. We assume a directed gr@hk V[ E, whereV is
suffer from inaccuracy in control leading to trajectory follow-3 set of vertices, representing sampleXinandE is a set

ing error. Some applications may still require a trajectorypf edges, representing samplesinEach edge is one of the
following controller, motivated above to satisfy position-pre-computed, feasible primitives. The dimensionalityVof
invariance assumptions in rough terrain and similar scenarigs. chosen so that a concatenation of edges is also a feasible

Signi cant disturbances in the environment, such as slopes @iotion. The least-cost path in the graph is the solution to
wind may be accounted for as additional state variables. Thige planning problem.

recommendation for a trajectory following controller does o
not offset the value of planning feasible motions, since norf: Deterministic Search
feasible ones are more dif cult or impossible to follow. The strengths of deterministic, exhaustive search include
This paper provides a more general exposition of latticattractive guarantees, such as optimality (under certain
primitives introduced in [28] and motivates them beyondonditions, such as heuristic admissibility) and resolution-
eld robotics [29]. It also proposes new applications of thesg¢ompleteness. One drawback, however, is the so-called
primitives in incremental and randomized search (Section Iljcurse of dimensionality”, the exponential growth of com-
as well asD* decomposition a novel algorithm to apply plexity with dimension of the search space. Nevertheless,
elements of D* search [16] to representation design, wherelt§is search technique remains attractive for systems that can
near-minimal sets of lattice primitives are generated automae modeled well in a few dimensions, including car-like [24],
ically (Section I). Experimental validation is discussed intracked [5], ying [8] and other systems of practical interest.
Section V. Such approaches to deterministic nonholonomic planning
typically guarantee feasibility by elaborating the primitives
&2 E by choosing a contrals 2 U and integratingf (vp; Us)
for a certainDt. The successor vertex is established at
the endpoint ofes. Since, in general, such edges and their
endpoints will be dense iK, such planners attempt to prune
the edges that are very similar, redundant or otherwise do
not contribute to ef cient exploration oX. For example,
if the endpoint of a certain edge; is a vertexvs, then a
Fig. 2. State cell predecessors. Three control-sampling primitive$€cONd edge? terminating inv is discouraged if distance
edgesf es; 2 %, emanate from their corresponding predecessor vertices (Vs; VY is small. To this end, these approaches establish
fVvp; Vp: Vol and arrive at successor vertichss; va V8. a discretization ofX into cells, as shown in Figure 2. If
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a cell containsvs, then €l is ignored if Vi would occupy
the same cell. The proposed lattice primitives may be used
identically, except that the need to detect similar edge end-
points is eliminated, since all motions are designed to arrive [y
at speci c state values, e.g. in Figure 2. A similar pruning )
rule is in effect in this setting, except that it is developed off- T
line during search space design. ] S ) ) o

Well-informed Search heuristics have the potential to ing, S Eiirecional search with ltice prinives, The BVP prables o
crease the ef ciency of the search substantially. Developingat feature regularity of endpoints in state space.
good heuristics for planning with differential constraints is a
challenging problem, and various approaches are being de- o
veloped [5], [6]. By position invariance of lattice primitives, Sructure. Once we compute tevathsof all primitives, we
applications are enabled to pre-compute the free-space coSpiect and store a list of edges that pass through the origin
of motions, stored in a look-up table, leading to the perfecﬁe”' By position invariance, this list may be reused anywhere
heuristic in terms of mobility constraints [15], [24]. in the search space.

1) Incremental Search:In many applications featuring 2) I_ncre_mental Sampling:The ad"ef‘t O.f rz_;mdomlzeo_l
physical robots, it is bene cial to perform incrementalplannlng in recent years has spurred inquiry into effective

search: once a plan is computed, it is ef ciently modi edsamplmg methods that avoid the “curse of dimensionality

(by reusing previous computation) should new informatioMVhile offering better solution qgality and completeness guar
about the environment invalidate it [16]. This enables thgntees than standard randomized approaches. Deterministic

planner to react quickly to frequent changes of the Worlmcremental sampling techniques have been proposed as vi-

model, including those due to uncertainty and noise of th _ble aIt_ernaItlves [le].' Ot_ne Offt:fm IS tr:je Hglton E{)omtd,- a
perception, localization and other systems. This type Imensional generalization ot the van der L.orput sequences

search is a standard component in many elded robotic%f d b_ases, one for each coqrdmate [10]'.A basic version of
uch incremental sampling in square grids can be thought

systems, since plan repair can be vastly more ef cient than

replanning from scratch. pf z?\ls increasing discretization resolution by a factor 9f 2

- . |
The reachability pruning schemes above, necessary fo The planners that do not enforce structure in edge con-

control-sampling primitives, are not fully compatible with L .
) ; . _nectivity would be required to regenerate the plan from
incremental search. The operation of such search requires an

. : cratch every time the sampling resolution is incremented.
ability to enumerate the edges that lead to a particular sta . I .
0.0 . - . bwever, lattice primitives enable the reuse of previous
e.g. the edges$es; €2,e29 leading to a cell containings in

. ; .. _computation via the same mechanism that allows incremental
Figure 2. A key component of incremental search algorithms ;
. search. Due to regular structure, the connections between
is therhsvalue, the one-step lookahead cost value, that is”. " .. . . .

de ned as [16] primitives belonging to different resolution levels become

trivial, thereby allowing the results of planning at different

( resolution to be reused. One application of this approach is
rhs(ve) = if Vs = Xinit _anytimeplan_ning, where the qL_JaIity of the computed plan is
s minvp2Pred(vs) (9(Vp) + C(Vp;Ve) otherwise improved with more computation.

(1) B. Randomized Search

whereg(vp) denotes the cost of the vertay, Pred(vs) is Lattice primitives may be utilized in randomized search in
the set of the predecessorsaf €.g.fvp;Vp; Vel in Figure 5 manner that is similar to other types of primitives [7]. As
2. Ong of the. ways Qf reusing previous computation is thguggested in Section I, the local planner component in [14],
capacity to pick a different predecessor qf a state in thﬁz], [22] and similar planners may be designed to choose
event that the current predecessor edge increases its cQst-alement of a set of primitives that is a good t to extend
However, as depicted in Figure 2, the predecessor edggs yree or the graph towards a random sample. However,
cannot be swapped in general because the distance betwgen, iy e of the regular structure of the state samples,
their endpoints (vs;vg) 8 O (by their density). This issue is |ayice primitives would enable additional capacity to execute
resolved with lattice primitives: this distance is zero, SiNC@arallelized kinodynamic planning, e.g. bi-directional [18],
all successors converge to the identizal Note that this i 55 \ye|| as a series of independent searches [25]. Figure 3
similar to traditional applications of incremental search iy qtrates that, unlike control-sampling primitives that would
grids. ) . . ) ] likely require multiple BVP solutions to connect partial
Moreover, in grids, it is typically easy to determine thepanning results, the layout of lattice primitives makes this
set of cells (and, consequently, edges) that are affectef,nection automatic.
when a region in workspace changes cost. With arbitrary
motion primitives, this computation is more involved, since IIl. DESIGNING LATTICE PRIMITIVES
the edges may span several cells. As discussed in [29], thisHaving motivated the proposed type of primitives, we
computation can be done priori by virtue of the lattice suggest a principled approach to designing them given the



planning problem formulated in Section Il. Assuming aexecuting, including multi-point turns in close quarters. Next
system model and a corresponding BVP solver, we discusg develop an explicit and exact representatioiJpfas a
this design in three stages: making a choice of the dimensiogeaphG, = Vi [ E;, as justi ed in Section II.
to include in the state space representation, developing theBy the given lattice state sampling rule, the 8&tis
sampling rule in that state space, and designing a compatibkeown. Theorem 1 develops a primitive €&f that generates
near-minimal set of lattice primitives that is a good reprek;, a superset ot);, when used as the Dijkstra's vertex
sentation of the system's reachability. The rst two stagegxpansion; free space is assumed below, unless otherwise
(Section 1lI-A) determine the set of contrdls U that can noted. More preciselyEo is a set of primitive sets de ned
possibly be represented with such primitives. Generally, thisr all possible trajetory initial states W, up to the invariant
set is in nite; Section 1I-B is dedicated to developing a neardimensions (e.g. position). For example, different values of
minimal primitive setE; U, that, when used as the vertexheading in Figure 1 would require different vertex expan-
expansion in search, will reconstruct a good approximation &ions;Eq can be viewed as the union of the corresponding
U;. More precisely, a planner, based on optimal (exhaustiv@yimitive sets.
search and equipped with,, will be able to compute the  Theorem 1:Suppose origin vertice® V; are chosen
motions inU, (preserve completeness) and will guaranteéup to invariant dimensions). For every vertex2 Vj, an
bounds on suboptimality of these motions w.th. An edge from each element @ to v; is computed using the
algorithm that computek, automatically is presented. BVP solver and added tBg (initially empty). When used as

i the Dijkstra’s vertex expansioio will search (equivalently,
A. State Space Sampling generate) & such thatt, U;.

In general, the problem of selecting the minimal number of  Proof: First, by construction, we conclude th&h
dimensions that adequately represent the planning problemdsntainsV, as endpoints of its primitives. Usinp as the
quite challenging. In the case of designing lattice primitivesDijkstra's vertex expansion amounts to replicating its edges
this issue is in uenced by the choice of the BVP solver. Inat everyv; 2 V. If, per connectivity ofU;, a certainv;
case the solver does not x the dimensionality, an iterativeonnects to a set of verticés;g, thenEp, when replicated
dimensionality reduction process may be undertaken. Onceagv;, will connect it to at least the same vertices, since
set of lattice primitives is designed at the highest dimensioriv;g Vi. Thus, the process of replicatingo at v; 2 Vi
ality, it may be repeated with one of the dimensions removegenerates at least the edges presettd, jrand therefore the
The process iterates until the loss of representation qualityduced set of edges; U;. [ ]
exceeds application tolerances. Using Ep as the vertex expansion represents an extreme

Once state dimensionality is xed, we develop a statef quality-complexity trade-off. The cost of the capacity to
sampling rule using two principles. First, it is bene cial for explore at least all dff; during search is a very large branch-
the sampling rule to minimize discrepancy or dispersion [21]ng factor, jEpj. Next we discuss an approach to manage
Grids and similar regular lattice structures typically minimizethis trade-off by computing an approximation primitive set
these measures, and they are frequently used in this settily. Eg of much smaller cardinality, while guaranteeing
Second, among similarly performing search spaces, thobeunded suboptimality of computable motions w.df. in
with more coarse sampling are preferred. This is an Occanterms of arbitrary notion of cost.
razor statement: a simpler approach is likely to lead to a This process attempts to decompose each motioR; in
solution that is easier to develop and test. Since controls &fgo two or more other motions that are alsoBn Decom-
induced by state sampling in this setting, it is bene cial toposition (Figure 4) is allowed only if the concatenation of
choose state samples that reduce the cost of controls, alge components is within a user-speci ed threshold on cost
lead to a greater number of straight-line motions. The abovgcrease, de ned as a cost ratip> 1 of the concatenated
principles are purposefully broad: each application imposegotion vs. the original one:
speci ¢ requirements on state sampling. For example, sam-
pling of position and orientation variables of robots is often a(Vp)+ c(Vp;Ve)  Gg(Ve) 2)
closely related to other design speci cations, such as the
delity of perception information and control accuracy of The component motions that can be reused to generate other

the vehicle. motions are collected int&,. E; is designed to be capable
of generating every one of the motions E, within the
B. Primitive Set Decomposition speci ed cost increase threshold.
Even though the representable set of contihls in nite, A brute-force approach to decomposifighy enumerating

the reachability of many systems of practical interest caall possible motion decompositions would be exponential in
be captured well by analyzing a nite, albeit very large, £ and therefore prohibitively expensive. We propose two
subsetJ;. For example, for car-like robots, we could de negreedy algorithms that produce near-mininil, given E

Uy as the set of motions that are contained in a regioandc;.

(centered around the robot) that is much larger in extent 1) Leave-one-out Decompositioithis algorithm decom-
than the robot's minimum turning radius. This motion seposes the motions ift; in decreasing order of their cost.
will include many maneuvers that the robot is capable ofhis implements a heuristic on managing the dependencies









ing radius was small compared to vehicle size, the positiomodi ed the plan ef ciently by limiting vertex expansions
was sampled as a grid with cell size equal to approximatelp a small neighborhood. The initial plan was computed in
half of min. turning radius. Heading was sampled in 16..42 seconds (on commodity hardware), and was repaired
non-uniform values: half were multiples qf=4, and the in 0.35 seconds — a nearly 4-fold speedup with respect to
other half were related to arc2) to maximize straight re-planning from scratch.

paths toward nearby cells. Only extremal values of steering

angle (including 0) and longitudinal velocity (three and two,

respectively), were chosen in order to explore the envelope ¢ a) i

the system dynamics. This sampling rule generated anothe

yet smaller, subset of system reachability, dendtkdin m i _I|
Section IlI-B. Since the state resolution was a multiple of the - L
reachability pruning resolution, the endpoints of the primi- - — -

tives were close to their respective state cell centers. Thos
that were not suf ciently close were improved via gradient
descent optimization by treating the durations of control
space samples, comprising the trajectory, as variables ar
the distance of the end-point to cell center as the objective
This was a signi cant computation, since gradient estimation

involved repeated execution of the physics simulation. Fig. 7. Kinodynamic incremental planning. Robot is avoiding a number
of obstacles (black cells), while traveling at high speed on slippery surface.
. . . A new obstacle (dark gray cells) is discovered and invalidates a segment
C. Car-like Robot with Dynamics of the previous trajectory (dotted line). D* repairs the path by expanding

The system in this example is a wheeled robot with thre&ates (light gray) only in the affected region.
driven wheels, one of which steers, as shown in Figure
7b. The system is simulated using the Open Dynamics
EngindMsoftware; the system model is not available in
closed form. The vehicle has signi cant mass, is capable We discussed a type of primitives that is designed via
of achieving high speeds and is placed on a very slippernggular sampling in state spaces. These primitives are pre-
at surface to highlight the effects of dynamics, such asomputed to meet two objectives: to capture the mobility
signi cant drift, sliding sideways, etc. constraints of the robot as well as possible and to establish

A comparative study of lattice and high-diversity primi-a state sampling policy that is conducive to ef cient search.
tives [2], [4], based on A* search, showed that the differThe rst objective allows encoding mobility constraints into
ence in performance in terms of runtime, solution qualityprimitives, thereby enabling fast unconstrained search to
and completeness of both types of primitives is less thgproduce feasible solutions. The second objective enables high
statistically signi cant. quality (lattice) sampling of state space, further speeding up

The benet of the principled approach here is that thexploration during search. We further discuss several novel
length of primitives is selected automatically, while it is xed results enabled by using such primitives for kinodynamic
for path diversity primitives. planning, including incremental, bi-directional search and

Next we describe experimental validation of incrementancremental sampling. Future work includes identifying new
search in this context, although other planning approaché&tate and control sampling techniques that further improve
may bene t from such primitives, as discussed in Section lIproperties of planning in deterministic and randomized do-
Figure 7 illustrates an example where a new obstacle invapains.
idated a segment of the previously computed trajectory. D*

V. CONCLUSIONS ANDFUTURE WORK
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