


primitives, where primitive endpoints are dense in state
space, state lattice ones yield a structure, where all paths
leading to a region in state space also lead to a unique
state value, as illustrated in Figure 2. This structure can be
exploited to attain unprecedented search ef�ciency in the area
of kinodynamic planning, including incremental search (a
potential to speed up planning by orders of magnitude) [16],
incremental sampling [21] and bi-directional search [18].
Finally, the freedom in state sampling may allow �tting the
search space to the known structure of the environment. This
strength of the approach was utilized recently to �t search
spaces to such settings as parking lots [24], roads [32], mines
[5] and indoor environments [31].

One drawback that may be experienced with the proposed
primitives is the potentially signi�cant computation that may
be required to design this type of primitives (perhaps running
the BVP solver repeatedly). However, this computation is
off-line and does not affect the runtime of the planner.
As another potential dif�culty in certain applications, the
constraint that the motions are arranged in a particular
manner may con�ict with other relevant objectives. For
example, minimizing the length of primitives may be helpful
for planning amidst dense obstacles, since shorter motions
are less likely to be obstructed [4], [23]. Meeting such an ob-
jective may be more challenging if a constraint on endpoint
arrangements is placed. Finally, even though the motions
computed using lattice primitives are feasible and may be
executed by the systemverbatim, most physical systems
suffer from inaccuracy in control leading to trajectory follow-
ing error. Some applications may still require a trajectory-
following controller, motivated above to satisfy position-
invariance assumptions in rough terrain and similar scenarios.
Signi�cant disturbances in the environment, such as slopes or
wind may be accounted for as additional state variables. The
recommendation for a trajectory following controller does
not offset the value of planning feasible motions, since non-
feasible ones are more dif�cult or impossible to follow.

This paper provides a more general exposition of lattice
primitives introduced in [28] and motivates them beyond
�eld robotics [29]. It also proposes new applications of these
primitives in incremental and randomized search (Section II),
as well asD* decomposition, a novel algorithm to apply
elements of D* search [16] to representation design, whereby
near-minimal sets of lattice primitives are generated automat-
ically (Section III). Experimental validation is discussed in
Section IV.

Fig. 2. State cell predecessors. Three control-sampling primitives,
edgesf es;e0

s;e
00
sg, emanate from their corresponding predecessor vertices

f vp;v0
p;v00

pg and arrive at successor verticesf vs;v0
s;v

00
sg.

II. M OTION PLANNING WITH LATTICE PRIMITIVES

In this section, we discuss the speci�cs of applying the
state lattice primitives in planning using two prominent
classes of search algorithms: deterministic (e.g. A*, D* [16]
and their variants) and randomized (e.g. PRM [14], EST
[12], RRT [22] and their variants). The planning problem
is speci�ed with a seven-tuple(X;Xf ree;xinit ;xgoal;U; f ;c).
The robotstate space, X � Rn, is ann-dimensional compact
differentiable manifold, equipped with a metricr . Xf ree � X
is the set of states that satisfy global constraints (e.g. control
bounds, obstacle avoidance, etc.). The boundary conditions
for the planning problem arexinit 2 Xf ree and xgoal 2 Xf ree.
The set of robot controlsU contains the inputs that the
system accepts. The functionf is the system model (equation
of motion) and encodes kinematics and dynamics constraints:
�x = f (x;u), wherex 2 X;u 2 U. The functionc : U � X ! R
speci�es the cost of executing a controlu 2 U in X. The
solution to the planning problem is a controlus : [t0; t f ] ! U,
where t0 is the starting time andt f is the �nal time, such
that c(us;xinit ) is minimized. The corresponding pathps :
[t0; t f ] ! Xf ree (obtained by integratingf (xinit ;us)) satis�es
ps(t0) = xinit andps(t f ) = xgoal.

Finding the exact solution involves optimization over the
continuum of X and U, a dif�cult problem because of
obstacles and local optima inX. Instead, it is common to
establish pruning rules that reduce the system's reachability
in X andU to discretized representations, often structured as
graphs. We assume a directed graphG = V [ E, whereV is
a set of vertices, representing samples inX, andE is a set
of edges, representing samples inU. Each edge is one of the
pre-computed, feasible primitives. The dimensionality ofV
is chosen so that a concatenation of edges is also a feasible
motion. The least-cost path in the graph is the solution to
the planning problem.

A. Deterministic Search

The strengths of deterministic, exhaustive search include
attractive guarantees, such as optimality (under certain
conditions, such as heuristic admissibility) and resolution-
completeness. One drawback, however, is the so-called
“curse of dimensionality”, the exponential growth of com-
plexity with dimension of the search space. Nevertheless,
this search technique remains attractive for systems that can
be modeled well in a few dimensions, including car-like [24],
tracked [5], �ying [8] and other systems of practical interest.

Such approaches to deterministic nonholonomic planning
typically guarantee feasibility by elaborating the primitives
es 2 E by choosing a controlus 2 U and integratingf (vp;us)
for a certainDt. The successor vertexvs is established at
the endpoint ofes. Since, in general, such edges and their
endpoints will be dense inX, such planners attempt to prune
the edges that are very similar, redundant or otherwise do
not contribute to ef�cient exploration ofX. For example,
if the endpoint of a certain edgees is a vertexvs, then a
second edgee0

s terminating inv0
s is discouraged if distance

r (vs;v0
s) is small. To this end, these approaches establish

a discretization ofX into cells, as shown in Figure 2. If



a cell containsvs, then e0
s is ignored if v0

s would occupy
the same cell. The proposed lattice primitives may be used
identically, except that the need to detect similar edge end-
points is eliminated, since all motions are designed to arrive
at speci�c state values, e.g.vc in Figure 2. A similar pruning
rule is in effect in this setting, except that it is developed off-
line during search space design.

Well-informed search heuristics have the potential to in-
crease the ef�ciency of the search substantially. Developing
good heuristics for planning with differential constraints is a
challenging problem, and various approaches are being de-
veloped [5], [6]. By position invariance of lattice primitives,
applications are enabled to pre-compute the free-space costs
of motions, stored in a look-up table, leading to the perfect
heuristic in terms of mobility constraints [15], [24].

1) Incremental Search:In many applications featuring
physical robots, it is bene�cial to perform incremental
search: once a plan is computed, it is ef�ciently modi�ed
(by reusing previous computation) should new information
about the environment invalidate it [16]. This enables the
planner to react quickly to frequent changes of the world
model, including those due to uncertainty and noise of the
perception, localization and other systems. This type of
search is a standard component in many �elded robotics
systems, since plan repair can be vastly more ef�cient than
replanning from scratch.

The reachability pruning schemes above, necessary for
control-sampling primitives, are not fully compatible with
incremental search. The operation of such search requires an
ability to enumerate the edges that lead to a particular state,
e.g. the edgesf es;e0

s;e
00
sg leading to a cell containingvs in

Figure 2. A key component of incremental search algorithms
is the rhs-value, the one-step lookahead cost value, that is
de�ned as [16]:

rhs(vs) =

(
0 if vs = xinit

minvp2Pred(vs) (g(vp) + c(vp;vs)) otherwise
(1)

whereg(vp) denotes the cost of the vertexvp, Pred(vs) is
the set of the predecessors ofvs, e.g. f vp;v0

p;v00
pg in Figure

2. One of the ways of reusing previous computation is the
capacity to pick a different predecessor of a state in the
event that the current predecessor edge increases its cost.
However, as depicted in Figure 2, the predecessor edges
cannot be swapped in general because the distance between
their endpointsr (vs;v0

s) 6= 0 (by their density). This issue is
resolved with lattice primitives: this distance is zero, since
all successors converge to the identicalvc. Note that this is
similar to traditional applications of incremental search in
grids.

Moreover, in grids, it is typically easy to determine the
set of cells (and, consequently, edges) that are affected
when a region in workspace changes cost. With arbitrary
motion primitives, this computation is more involved, since
the edges may span several cells. As discussed in [29], this
computation can be donea priori by virtue of the lattice

Fig. 3. Bidirectional search with lattice primitives. The BVP problem of
connecting the leaves of the two trees is eliminated with lattice primitives
that feature regularity of endpoints in state space.

structure. Once we compute theswathsof all primitives, we
collect and store a list of edges that pass through the origin
cell. By position invariance, this list may be reused anywhere
in the search space.

2) Incremental Sampling:The advent of randomized
planning in recent years has spurred inquiry into effective
sampling methods that avoid the “curse of dimensionality”
while offering better solution quality and completeness guar-
antees than standard randomized approaches. Deterministic
incremental sampling techniques have been proposed as vi-
able alternatives [21]. One of them is the Halton points, ad-
dimensional generalization of the van der Corput sequences
of d bases, one for each coordinate [10]. A basic version of
such incremental sampling in square grids can be thought
of as increasing discretization resolution by a factor of 2di,
i 2 N.

The planners that do not enforce structure in edge con-
nectivity would be required to regenerate the plan from
scratch every time the sampling resolution is incremented.
However, lattice primitives enable the reuse of previous
computation via the same mechanism that allows incremental
search. Due to regular structure, the connections between
primitives belonging to different resolution levels become
trivial, thereby allowing the results of planning at different
resolution to be reused. One application of this approach is
anytimeplanning, where the quality of the computed plan is
improved with more computation.

B. Randomized Search

Lattice primitives may be utilized in randomized search in
a manner that is similar to other types of primitives [7]. As
suggested in Section I, the local planner component in [14],
[12], [22] and similar planners may be designed to choose
an element of a set of primitives that is a good �t to extend
the tree or the graph towards a random sample. However,
by virtue of the regular structure of the state samples,
lattice primitives would enable additional capacity to execute
parallelized kinodynamic planning, e.g. bi-directional [18],
as well as a series of independent searches [25]. Figure 3
illustrates that, unlike control-sampling primitives that would
likely require multiple BVP solutions to connect partial
planning results, the layout of lattice primitives makes this
connection automatic.

III. D ESIGNING LATTICE PRIMITIVES

Having motivated the proposed type of primitives, we
suggest a principled approach to designing them given the



planning problem formulated in Section II. Assuming a
system model and a corresponding BVP solver, we discuss
this design in three stages: making a choice of the dimensions
to include in the state space representation, developing the
sampling rule in that state space, and designing a compatible,
near-minimal set of lattice primitives that is a good repre-
sentation of the system's reachability. The �rst two stages
(Section III-A) determine the set of controlsUl � U that can
possibly be represented with such primitives. Generally, this
set is in�nite; Section III-B is dedicated to developing a near-
minimal primitive setEa � Ul that, when used as the vertex
expansion in search, will reconstruct a good approximation to
Ul . More precisely, a planner, based on optimal (exhaustive)
search and equipped withEa, will be able to compute the
motions in Ul (preserve completeness) and will guarantee
bounds on suboptimality of these motions w.r.t.Ul . An
algorithm that computesEa automatically is presented.

A. State Space Sampling

In general, the problem of selecting the minimal number of
dimensions that adequately represent the planning problem is
quite challenging. In the case of designing lattice primitives,
this issue is in�uenced by the choice of the BVP solver. In
case the solver does not �x the dimensionality, an iterative
dimensionality reduction process may be undertaken. Once a
set of lattice primitives is designed at the highest dimension-
ality, it may be repeated with one of the dimensions removed.
The process iterates until the loss of representation quality
exceeds application tolerances.

Once state dimensionality is �xed, we develop a state
sampling rule using two principles. First, it is bene�cial for
the sampling rule to minimize discrepancy or dispersion [21].
Grids and similar regular lattice structures typically minimize
these measures, and they are frequently used in this setting.
Second, among similarly performing search spaces, those
with more coarse sampling are preferred. This is an Occam's
razor statement: a simpler approach is likely to lead to a
solution that is easier to develop and test. Since controls are
induced by state sampling in this setting, it is bene�cial to
choose state samples that reduce the cost of controls, e.g.
lead to a greater number of straight-line motions. The above
principles are purposefully broad: each application imposes
speci�c requirements on state sampling. For example, sam-
pling of position and orientation variables of robots is often
closely related to other design speci�cations, such as the
�delity of perception information and control accuracy of
the vehicle.

B. Primitive Set Decomposition

Even though the representable set of controlsUl is in�nite,
the reachability of many systems of practical interest can
be captured well by analyzing a �nite, albeit very large,
subsetÛl . For example, for car-like robots, we could de�ne
Ûl as the set of motions that are contained in a region
(centered around the robot) that is much larger in extent
than the robot's minimum turning radius. This motion set
will include many maneuvers that the robot is capable of

executing, including multi-point turns in close quarters. Next
we develop an explicit and exact representation ofÛl as a
graphĜl = V̂l [ Êl , as justi�ed in Section II.

By the given lattice state sampling rule, the setV̂l is
known. Theorem 1 develops a primitive setEO that generates
Êl , a superset ofÛl , when used as the Dijkstra's vertex
expansion; free space is assumed below, unless otherwise
noted. More precisely,EO is a set of primitive sets de�ned
for all possible trajetory initial states in̂Vl , up to the invariant
dimensions (e.g. position). For example, different values of
heading in Figure 1 would require different vertex expan-
sions;EO can be viewed as the union of the corresponding
primitive sets.

Theorem 1:Suppose origin verticesO � V̂l are chosen
(up to invariant dimensions). For every vertexvi 2 V̂l , an
edge from each element ofO to vi is computed using the
BVP solver and added toEO (initially empty). When used as
the Dijkstra's vertex expansion,EO will search (equivalently,
generate) aĜl such thatÊl � Ûl .

Proof: First, by construction, we conclude thatEO
containsV̂l as endpoints of its primitives. UsingEO as the
Dijkstra's vertex expansion amounts to replicating its edges
at every vi 2 V̂l . If, per connectivity of Ûl , a certainvi
connects to a set of verticesf v jg, thenEO, when replicated
at vi , will connect it to at least the same vertices, since
f v jg � V̂l . Thus, the process of replicatingEO at vi 2 V̂l
generates at least the edges present inÛl , and therefore the
induced set of edgeŝEl � Ûl .

Using EO as the vertex expansion represents an extreme
of quality-complexity trade-off. The cost of the capacity to
explore at least all of̂Ul during search is a very large branch-
ing factor, jEOj. Next we discuss an approach to manage
this trade-off by computing an approximation primitive set
Ea � EO of much smaller cardinality, while guaranteeing
bounded suboptimality of computable motions w.r.t.Ûl in
terms of arbitrary notion of cost.

This process attempts to decompose each motion inÊl
into two or more other motions that are also inÊl . Decom-
position (Figure 4) is allowed only if the concatenation of
the components is within a user-speci�ed threshold on cost
increase, de�ned as a cost ratioct > 1 of the concatenated
motion vs. the original one:

g(vp) + c(vp;vs) � ctg(vs) (2)

The component motions that can be reused to generate other
motions are collected intoEa. Ea is designed to be capable
of generating every one of the motions in̂El , within the
speci�ed cost increase threshold.

A brute-force approach to decomposingÊl by enumerating
all possible motion decompositions would be exponential in�
�Êl

�
� and therefore prohibitively expensive. We propose two

greedy algorithms that produce near-minimalEa, given Êl
andct .

1) Leave-one-out Decomposition:This algorithm decom-
poses the motions in̂El in decreasing order of their cost.
This implements a heuristic on managing the dependencies







ing radius was small compared to vehicle size, the position
was sampled as a grid with cell size equal to approximately
half of min. turning radius. Heading was sampled in 16
non-uniform values: half were multiples ofp=4, and the
other half were related to arctan(1=2) to maximize straight
paths toward nearby cells. Only extremal values of steering
angle (including 0) and longitudinal velocity (three and two,
respectively), were chosen in order to explore the envelope of
the system dynamics. This sampling rule generated another,
yet smaller, subset of system reachability, denotedUl in
Section III-B. Since the state resolution was a multiple of the
reachability pruning resolution, the endpoints of the primi-
tives were close to their respective state cell centers. Those
that were not suf�ciently close were improved via gradient
descent optimization by treating the durations of control
space samples, comprising the trajectory, as variables and
the distance of the end-point to cell center as the objective.
This was a signi�cant computation, since gradient estimation
involved repeated execution of the physics simulation.

C. Car-like Robot with Dynamics

The system in this example is a wheeled robot with three
driven wheels, one of which steers, as shown in Figure
7b. The system is simulated using the Open Dynamics
EngineTMsoftware; the system model is not available in
closed form. The vehicle has signi�cant mass, is capable
of achieving high speeds and is placed on a very slippery
�at surface to highlight the effects of dynamics, such as
signi�cant drift, sliding sideways, etc.

A comparative study of lattice and high-diversity primi-
tives [2], [4], based on A* search, showed that the differ-
ence in performance in terms of runtime, solution quality
and completeness of both types of primitives is less than
statistically signi�cant.

The bene�t of the principled approach here is that the
length of primitives is selected automatically, while it is �xed
for path diversity primitives.

Next we describe experimental validation of incremental
search in this context, although other planning approaches
may bene�t from such primitives, as discussed in Section II.
Figure 7 illustrates an example where a new obstacle inval-
idated a segment of the previously computed trajectory. D*

Fig. 6. Automatic pruning of primitive sets. Several subsets of primitives,
generated for the given system, are shown; abundance of high curvature
is due to extreme dynamics. Top and bottom rows include primitives at
low and high velocity, resp. The columns show the primitives with �nal
headings 0� , 90� and 180� (left to right). Gray motions have been pruned,
as concatenations of black motions can replicate them within speci�ed cost
increase threshold.

modi�ed the plan ef�ciently by limiting vertex expansions
to a small neighborhood. The initial plan was computed in
1.42 seconds (on commodity hardware), and was repaired
in 0.35 seconds – a nearly 4-fold speedup with respect to
re-planning from scratch.

Fig. 7. Kinodynamic incremental planning. Robot is avoiding a number
of obstacles (black cells), while traveling at high speed on slippery surface.
A new obstacle (dark gray cells) is discovered and invalidates a segment
of the previous trajectory (dotted line). D* repairs the path by expanding
states (light gray) only in the affected region.

V. CONCLUSIONS ANDFUTURE WORK

We discussed a type of primitives that is designed via
regular sampling in state spaces. These primitives are pre-
computed to meet two objectives: to capture the mobility
constraints of the robot as well as possible and to establish
a state sampling policy that is conducive to ef�cient search.
The �rst objective allows encoding mobility constraints into
primitives, thereby enabling fast unconstrained search to
produce feasible solutions. The second objective enables high
quality (lattice) sampling of state space, further speeding up
exploration during search. We further discuss several novel
results enabled by using such primitives for kinodynamic
planning, including incremental, bi-directional search and
incremental sampling. Future work includes identifying new
state and control sampling techniques that further improve
properties of planning in deterministic and randomized do-
mains.
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